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ABSTRACT 

We s tudy the almost  everythere convergence to the initial da ta  f ( z )  = 

u(z,0) of the solution u(z,t) of the two-dimensional linear Schr6dinger 
equation Au = iatu. The main result is that u(z, t) ---, f(z) almost every- 
where for t --* 0 if f E HP(R2), where p may be chosen <1/2. To get this 
result (improving on Vega's work, see [6]), we devise a strategy to capture 
certain cancellations, which we believe has other applications in related 
problems. 

We are interested in the problem of almost everywhere convergence u(x, t) - - *  

u(x, O) for solutions u of Au = iatu on R d+l. In dimension d = 1, it was shown 

by L. Carleson [2] that  the condition u(x,O) = f ( x )  • H1/4(R), i.e. L2-control 

on the derivative of order ¼ of f ,  suffices. This result is sharp as observed by 

Dahlberg and Kenig in [3]. In dimension > 2 the correct exponents are unknown. 

The best result up to date for d >_ 2 is the condition f ( z )  • HS(R d) for some 

s > ½, obtained independently in [1], [5], [6]. We will be concerned here with 

dimension d = 2. The purpose of this note is to improve to f • HP(R 2) for 

some p < ½. (We consider only the local problem.) The heart of the matter  

consists of some new estimates on certain particular integral operators. This 

line of investigation seems of interest by itself and the technique developed here 

most likely also applies to related problems, such as certain Korteweg-deVries 

equations. We don't intend to pursue these matters here, neither will we try to 

optimize the result of the method. The author is grateful to M. Ben-Artzi for 

discussions on the subject. 
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Consider the operator 

(1) TI(x) = / ](~)ei'(*)l~l'ei(~'~)d~ 

R2 

where 0 < t(x) < 1. We consider the local problem, i.e. x e D(0,1) = unit disc. 

Here t(x) is an arbitrary function. We will first reduce the problem to studying 

integral operators of the form (12) below. Our methods have a certain formal 

resemblance to those used in analyzing the Luzin maximal function (cf. [4]) and 

involve combinatorial considerations. 

Consider the usual Littlewood-Paley decomposition of f ,  i.e. 

k>o 

where h(~)  =/(~)qok(l~l) and qo~ is a bumpfunction, and write 

T=~Tk, 

f (2) Tk/(x) = J 

We evaluate the individual  components  Tk on L 2. Our  aim is to get an es t imate  

1 
(3) I[Tkl[ < 2 pk for some p < ~. 

This will yield boundedness of T on HP where p < ~. 

Dualizing Tk, one has to estimate 

T~ g(~) = / g(x)ei'(~)tfl'ei(*'~) dx • ~k([~l) 

acting from L2(D(O, 1)) to L2(R2). 

One has (repeating Carleson's argument) 

where 

/ IT;,gl2d~ = / g(x)g(y)Kl(x, y)dxdy 

K~ ( z, y) = / ei[(~-Y'~)+(t(*)-t(Y))l~12]qok(l~l)2d~. 
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Using polar coordinates ~ = (r cos 8, r sin 0) and stationary phase, K1 (x, y) has a 

main term which is captured by a kernel of the form 

( Ix-yf ~ e ~ ~  
K2(z,y) 2[t(7) :- 7(y)] ] Ix - yll/2It(x) - t(y)l'/~ k 

( 2,/, 
(4) + o \ I, - yl ) "  

The contribution of the second term in operator norm is _< 2 k/2, hence negligible. 

The first term is clearly bounded by 

(5) 2~ i 
Ix - yl 

which has operator norm 2 k. This approach would lead to the condition f E H 1/2. 
Our aim is to make a more delicate estimate in order to show that the operator 

norl i1 

(6) I]~k (~(Ix;-  [ I ~ ) ) i x -  y,,/21~(x)- t(,~)l~/~ I[ _< 2(½-')'. 
This estimate is local in the sense that we keep x, y E D(0, 1). It should be 

uniform over all possible functions 0 < t(x) < 1. 

We do a first reduction. Use letters bl, b2,.. ,  for parameters to be specified 

later. Fix 0 < bl < 1 and define for j > 0 

(7) Dj = {x e D(0,1)[jb12 -k _< t(x) < (j + 1)b12-~}. 

If Ka(x, y) is the kernel appearing in (6), write for b2 > 1 

Ks(x,  y) = E KS(z,y)XD,(X)XD,,(y) 
(8) l<_li-j'l<_b['b2 

+ 0 ([Ka(x, Y)iXll,(,)-,(,)l<b,2-'lu[I,(,)-,(,)l>b,2-'l) • 

The error term in (8) is bounded by 

2 k/2 1 
(9) Ix - y[X[I,-yl<_bd + b~ '/22k/2 Ix - ~1'/~ 

which operator norm on L 2 is clearly 

(10) _< 2,,2 (b, + b l/2) 
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The operator norm of the first term in (8) is at most 

(11) 2k/2b2b'~C E1 

where E1 is a uniform bound on operators with kernel of the form 

• 2klx - yl 2 
K,(x, y) = eXP 'a'-~'~ a-"~) (12) 

where 

(12') 

and 

(12") 

O < a < b l  

2bl < a < b2. 

Isr. J. Math. 

(13) 
Uj = {x E D(O, 1)ljb32 -~ _< a(z) < (j + 1)b32-k}, 

Uj = {x E D(0,1)ljb32 -~ _< a(x) < (j + 1)b32-k}. 

A direct verification shows that if a (resp. ~) is replaced by a function constant 

on each Uj (resp. U'j), an error appears of at most 

b3 
(14) b~" 

Since K4 is uniformly bounded, an L2-L 2 estimate of 2 -ek will result from a 

bound: 

I ff f(x)g(ylK,(x, yldxdy <_ 2-'kllfll llgll . 
D(0,1) xD(0,1) 

Writing K4 = E£j, K4(x, Y)Xuj (x)xo i, (Y), one gets by the preceding hypothesis 

on a, a the following bound on the left of (15): 

(16) b~2-k~-~llfw, ll~llglo~,ll~ _< b~2 -~ ~ I~.~l~/~lOJ, lI/~. 
J,J' £2 _<b;~2 ~' 

Thus we have to show that the norm of such/(4 is bounded by 2 -~k, indepen- 

dently of a, ~. Observe that if a, a would be constant, K4 would be a convolution 

operator of norm _~ 2-kb2. 

Fix 0 < b3 < 1 and consider the sets 
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Fix b4 > 1 and define 

(17) J = {j[[Ui[ > b42 -k} and J '  = {j[[0j,[ > b,2-k}. 

Thus --]# J, # J' < b~-12 k and hence by Cauchy-Schwartz 

(18) 
lUili/21Oj, I ' "  < b;'/2b-~i/22k (SlUil)x/2 (~,lOj, I)i/2 < (b364) - i [22  k. 

j E J  or j 'EJ '  

Substituting (18) in (16) yields a contribution 

( 1 9 )  b~(b3b4) -x'. 

Eliminating this contribution, one gets image measures ts (resp ~) of a : D(0, 1) 

R (resp a) satisfying by construction 

(20) u(I) _< ~ [ I [  + 2 -k and b(I) _< ~lZl + 2-k. 

In fact, only the properties of a will be used. 

Come back to (15). Consider subsets V/of U i and estimate 

3 D(o,1) D 

(21) < IVj[-1//V/xVi I /K4(xl 'y)K4(zz 'y)dyldxldx2 

Denote aj the value of a on Uj. It follows from (12) that 

(22) K4(xl,y)K4(x2,y) = e x p i 2  k Ix112 - Ix2f f  - 2 ( y ,  z l  - x~) 
a i  - a ( y )  

We will use the following lemma: 

2~r LEMMA 23: Let # be a probability measure on D(O, R)\D(O, p) and # = fo podO 
its radial disintegration. Let N E Z+ and assume 

2~; 1 1 
(24) / / /P°(£1) l ' t ° ( - -dr2)dO 

[r I _ r2 [ -[- _~ < bs. 
o 0 0 
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L e t  ~l ,  6 ,  . . . , ~r E 

s = l , . . . ~ r  

(25) 

t hen  r sa t i s f ies  

(26) 

Proof:  

instance Re/~(G) > be, 

(27) 

and hence also 

(28) 

J. BOURGAIN Isr. J. Math. 

R 2 sa t i s f y  ] { s - { s , [  > 1 f o r s  # s '  and I{o1 < N .  I Z f o r  

r _< O R2 b5 
p b:" 

By passing to a proportional subset of {1,... ,r}, one may assume for 

I 1 )--]. e 2,''<e'',> v(dz) > ~rb., 
$.r-I 

where v is the expectation of/~ w.r.t. 

~ 1 / N .  Defining 

(29) 

a partition of D(0,1) in squares of size 

= > ~ n ~ - ~ r b ~  ] 
one gets by HSlder's inequality 

(30) 

and hence 

f [~e2~'<¢'">[~V=) < lrbs 
1 D\Y 

b6 (31) v(Y) > -~. 

The set r is a union of ( ~  x ~)-squares (I=)~<~, where from (29) and (31) 

IooR2 2 
(32) ~ < ~----b~--N 
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and 

(33) 

It follows from (24) that 

(34) 

SCHRODINGER OPERATORS 

b6 s~,(z,,) > -g. 

2~ 

N / Za~o( I~)  ~ < 2b5 
0 

where I~ = Za N R. (cos 8, sin 8). Also, since dist(0, la) > p 

I / r \~ /2  ) 
and thus, by (33), (34) and Cauchy-Schwartz' inequality, 

N 2 
(35) b~ _> N2pr.~(/o) 2 _> p T b l .  

Substituting (32) yields the bound (26) on r. 

Coming back to (21) and (22), we fix a parameter 

(36) p = 

and consider the image measure #j of 2-dimensional Lebesgue measure on 

9(0 ,  I) \ 9 (0 ,  pb2) under the map 

Y (37) ¢~: Y ~ a(y) - . i" 

Observe that this map preserves the rays. One gets the bound 

(38) n < bp  

from the hypothesis on a, a. 

Since P£0 is the image measure of r .  dr under the map 

r 
¢~,o(r) = a(,~o) - a~' ~o =(cosO,  sinO), 

the left member of (24) equals 

2~r 1 1 
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which is bounded by 

2~r I 1 
drl dr2 dO 

f f f lai(rl-r2)-rla(r2eo)+r2a(rleo)l+N-Xb~ < 
0 0 0 

27¢ 

: / / /  drldr2dO 

0 

(40) +N-Sb'~ 2. 

(Irl - r2l + N-9) (lai - rla(r2e°) - rza(rle°) l + - r2 

Here we let N = 2 k. It follows from (13) that 

at - 9  bs < ~ .  

Hence, summing (40) over all j yields the inequality 

(41) 
2~ 

• ~ 1 = ~  '--- ~ 2 k b ; l b l 2 k 2 "  

i o 

(No properties of a were used, except (12").) 

Define 

(42) v¢ = {(~,,x2) ~ ~ × ~911/K,(~,,V)K,(x2,v)dYl > bs} 

and assume 

(43) 
2~ 

Irl - r21 + 2 -k 
0 

(44) rues (Vi) > b94 -k 

We assume j fixed and drop the j-subscript. 

For 6 E [-1, 1], define 

(45) Y6 = {(xl,x2) E l¢[IZll 2 -Ix2l  2 = 6} 
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and 

(46) 
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Assume ~1,. . .  ,~r a 2-k-separated set in Vs and let ~ = 2 ~ .  Defining 

(47) ~(Y) = exp i2 k ~f 
a - 

one  h a s  

~l t / ~(y)ei(Y"°'/(a(Y)-a)dy I > rb8 
and hence 

(48) r2p'b2+ E I /~(~ ' -~") l  >r2bs2 
$15# ~/* I 

where p is the image measure under the map 

Y 

Since (43) holds, Lemma 23 gives the following upper bound on (48) (by (38)): 

bs (49) r . . 2  ~2 ~--'-"~ + r2 bs + r 2 p2 b~, 
F Vl v6 

and letting b7 - p ~ b~ -1 bs, bs ~ b2s it follows that  

b~bs 
(50) ~ < ~2~12" 

~1 ~8 

Clearly this bound on the 2-k-entropy of V6 implies the measure estimate 

(51) IV~I _< b-;2b~b~K~4 -k. 

D e n o t e  2:1 = ( Z l , l ,  Xl,2),  z2 = (2~2,1, x2,2) a n d  c o n s i d e r  t he  c o o r d i n a t e  t r a n s f o r -  

m a t i o n  f ( x l ,  x2) = (6, y, 6') given by 

(52) (xa,x2) ~ ]xll 2-lx212,x1-z2' ~ x21 ] 

for which the Jacobian 

(53) J(F)  ~ Ix1 - z21 > & 
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Since Projy[F(V)s] = Vs, one has by (44) and (51) 

fF d~dyd61 b94 - ~  < 8_ ~ 
(v) 6 + 

fp d~dy 
< roj(s,,)F(V) 6 + 8 -~ 

(54) <_ b?2b~bsb;l k . 4 -~. 

These inequalities imply the existence of 6 and y such that 

(55) rues F(V)~,, > b~ b; 2 b; 1 b~ 2 b~ k-1. 

If F(~I, ~ )  = (~,y, e) ,  one has 

(56) ( (,,,~> e, 

Isr. J.  Math. 

where ~2 = Y/lYl and y = (-Y2,yl)/IY[ the orthogonal vector. Consequently, 

there is a line L such that 

L2t--2~--I t12 t L--1 (57) IL n Vi > ~ ~s ,,s ~9,, - b~. 

Hence, assuming no line L satis~es (57) with respect to D,  (43) and (44) are 
contradictory. Hence, one of the following properties holds 

(58) / / / p,,o(drl)pjo(dr2)dO 
I r l - r 2 1 + 2  -k >bs,  

(59) mes ~ < blo2 -k, 

(60) rues Vj < b-~o2-kmes Vj. 

From (41), the number of j ' s  satisfying (58) is at most 2kb~lb'~2k2b~ 1, which 

contribution in the (21)-sum is bounded by b~lb'~2k2b~lb4, since I~1 -< IUil < 

b42 -k. 
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The contribution of (59) is bounded by blob~ 1. Finally, the contribution of the 

(60)-terms is at most 

EI'~[ - I (  / /  ...}..Fb31blolbg<bs+b31b~olbg. 
J vi x~\V~ 

Collecting previous estimates, one gets the following bound on (21): 

(61) {b~lb'~2k2b~lb4 + bl0b~ -1 + bs + b~lb'~b9} 1/2. 

Given Uj, there is a decomposition in disjoint sets, 

(62) U i = V/U Uo W~,, 

where ~ satisfies the previous condition, i.e. no line L intersects Vj in a set of 

(1-dimensional) measure > bll and to each W~, one may associate a rectangle R,, 

such that 

(63) Wo, c R~; IWo`l _> b, llRo`l. 

We assume Uj in a union of r-squares, where r > 0 is chosen sufficiently small. 

One then constructs the Wo  ̀by induction and the R,~ have r-width. This con- 

struction is standard and we omit details. Observe that by (63) 

(64) ~IR~,I _< bT~lU)l. 

Assume j satisfies (43). One has to estimate 

(65) /0(o,1) I/w,, f(z)K4(x.,y)dz[dy. 
One bounds (65) by 

(66) r- a 

where or is a (uniform) estimate on 

(67) 
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Here a E D(0, 1), [~] = 1 and I f ]  -< 1. Squaring again, (67) 2 is bounded by 

(68) fo' f f  l fD(o,,)K4(a + ~ul,y)K4(a + ~u2, v)dy du,du2. 

From (22), one gets for the integrand the expression 

(69) exp i2 • 2(a, ~)(u, - u2) + u~ - u~ - 2(y, ¢)(u, - u2) aj - a(y) 

The transformation G(ul,u2) = (ux, u2) defined by 

{ vl = 2(a, ~ ) ( . ,  - .~ )  + u~ - u~ 

~)2 = U l  - -  U2 

h ~  Jacobian S(V)  = 21u, - ~1 .  

Repeating the considerations leading to (50) shows that, if Vl is fixed, then 

(70) mes{v2[/expi2'Va-a~j2(Y'~)V2dy } ~-2~2~ ~-,2,~-. - -  a ( y )  > b12 ~ u l  U2UbU12 ~ " 

Hence, for x > 0 

(68) <- ,-/f,,,-uH<,,'"duldu2 

1 i 2 k ~ x ~ 2 ( y , ~ ) v ~ .  I . .  "at- f f [U2 [ JV ~ l f eXp "3 : ~('~) a~/[ at~l av2 

_ 1 I.--21.21. l.--12,3--k (71) < x + b 1 2 1 o g l  + - ~ 1  ~ s ~ 1 2  '~ • 
tg t~ 

Choosing ~; appropriately, this yields the following estimate of a: 

/ I / 2  / - - I / 2  / I 1 2 / 1 / 4 / - 3 9 - k / 4  (72) a ~ v12 "~ ~'1 u2 ~5 ~12 " • 

Hence (65) is bounded by ]R~[. (72) and summation over a yields, by (64) and 

(72), 

(73) /D(O,,) [ fuw,, f(x)K,(x,y)dx dy <_ bTib71/14b~/14b~/282 -k[28 Uj[ 

for an appropriate choice of bl~. 
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From (61), (62) and (73), it follows that 

[ f ( x ) K 4 ( x , y ) d x d y < _  

(74) ~-1/2~1/2 b11b;1]2bl/2b; 1/2k "~-~'3 ~'I0 "{- b~/2 
/--1/2/--1/2/1/2 l_lb-1/1411/1411/28o_k]28 
L'3 ~10 ~9 ~ ~11 1 "2 "5 "~ " 

By (19), (74) and (57), there is the following bound on E,: 

(75) 
/ --1/2 / 1/2 / 1/2/,. /--1/2/1/2 

b'~%s + b2b-~l/2b'~ '/2 + b-;Ivs v4 v5 ~ + vs ~10 
~1/2 l -1 /2h-1 /2hl /2  l - s ~ s ~ - 1 2 ~ - l k 2 - k / ~ s "  

+ vs + ~3 ~1o ~9 + ~1 ~ 5 ~ s  ~o 

Thus (6) is bounded by 

(76) 2k/2{bl + b~ 1/2 + b'ZCb2 • (75)} 

from (10) and (11). Here c is some constant. 

Choosing in order bl, b2, bs, b4, bb, bs, bl0, bg, a gain of 2 -¢k is gotten, where 

e > 0 is some constant. This yields inequality (6) and hence (3). 

Append ix  

There is a different approach to the estimate proved in the paper, using the recent 

work of the author on Fourier restriction results in R s. This approach will mainly 

combine the results from [B1] and [B2] listed at the end of this appendix and give 

some application of the non-L 2 restriction phenomena (in dual form) obtained 

in [B1]. It would be possible to derive from the argument presented below some 

explicit exponent, but for the sake of simplicity we won't attempt here to make 

things more precise and optimal. Thus we look for an inequality of the form 

(A.1) oS<Utpl I / /(~)ei((z'~}b']'[2)d~[ L2(B(0,1)) ~ Np ( f  ]/(~)12d~) 1/2 
I~I<N 

for some p < ½. 

Choose some q > 2 and estimate the left member of (A.1) by appropriate 

change of variables (rescaling), 

l¢1<1 
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Using standard considerations, one may then estimate it further by 

(A.3) N 20-11q) f /(N~)ei(("D+t]~I') d~ 
o 

J<l Lq(dzdt) 

Consider the surface (~, I~12) in R 3, restricting ~ to the unit disc. Since there is 

obviously curvature and smoothness, the restriction and extension theory apphes 

equally well as for the sphere. Call (p, q) an admissible exponent pair provided 

with # a measure carried by the 2-sphere 5'2 or the restricted paraboloid P 

considered above. The classical L 2 - restriction theorem states then that (2,4) is 

admissible and in [B1] admissible pairs were obtained with q < 4. 

Applying the (p, q) pair in (A.3), one gets a bound 

(A.5) N2(lI1,,) (/i/(N~)lpd~)l/p N2(l_pt_l) ( /  ^ ~l/p = lf(~)IPd~) . 

_ 1 For p = 2,q = 4, that is inequality (A.1) with p - ~. 

It was shown in [B2] (immediate consequence of Lemma 3.23) that this (2,4)- 

estimate may be improved, unless the density "corresponds" to the indicator 

function of a cap (as a rough statement). More precisely, if we assume ] to be 

of the form 

X ,  
c B(0, N)) 

then an improvement will be obtained, unless for some square Q one has 

(A.7) la l  ~ IQI ~ l a n Q I .  

Remark: ] may always be broken up in level sets. The meaning of ,,~ actually 

will allow factors of the form N s for some specific 6 and so is the meaning of 

an "improvement". That this is the result of the reasoning below is left to the 

reader to check. 
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So assume (7) holds. If JQI ~ N2, apply estimate (A.5) for an admissible pair 

(p, q) with q < 4, gotten from [B1]. Since here 

( / ) ' "  (A.8) I](~)lVd~ '-' Y 2 / v Y  -1 

we get an estimate of the form 

(A.9) N 1-~/q 

w i t h  1 - 2/q < ½. 
If ]Q] = N~, with N1 = N 1- ' ,  thus Q c ~o + B(O, NI) ,  we proceed as follows. 

Write in (A.2) 

(AaO) 

where ~ = ~olN, I,I < N I l N .  
It is clear from (A.10) that the parameter values needed to recapture the 

supremum for t E [0, N 2] may be taken in a NINl-ne t  and hence the passage 
to the t-integral and (A.3) gives a saving of a factor (N1 /N)  1/9. Then continue 
with the (2,4)-extension theorem to conclude also that case. Going through 
this argument a bit more explicitly, this easily leads to (A.1) with an exponent 
p < ½ .  
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